Dingding Zheng

(+1)445-888-1792 | zddkj@alumni.upenn.edu | Homepage | Github

EDUCATION

University of Pennsylvania

Master of Science in Engineering, Robotics

Donghua University Bachelor of Science in Engineering, Electrical Engineering

Research Interests

Micro Aerial Vehicles, Multi-agent Systems, Human Robot Teaming, Visual-SLAM, Optimal Control

Research Experiences

Distributed and Collaborative Intelligent Systems and Technology

University of Pennsylvania, Kumar lab

- Researching on a variant of the multi-player reach-avoid game played between intruders and defenders with applications to **Perimeter-Defense**. Currently developing Perimeter-Defense algorithms for 30 Warthog robots.
- Implemented behavior cloning and task allocation algorithms for multi-robot system using Graph Neural Network.
- Improved the ROS, Unity-based Docker testing environment for heterogeneous systems.

Reconfiguration of Multi-modular Robots (SMOREs)

University of Pennsylvania, Modlab

- Researched on decreasing 3D reconfiguration empirical run-time of modular robots.
- Initialized multi-camera detection system using "Vicon" and "Apriltag".
- Implemented a MPC controller using ROS tuw package to do multi-robot path-planing and tracking.
- Explored new ways to justify the similarity between different robot configurations (topology).

Human Robot Interaction & Safety Guarantee for Multi-agent System Aug 2019 – Oct 2019 University of Pennsylvania, PRECISE lab Supervisor: Prof. Osbert Bastani

- Added car dynamics model into OpenAI multi-agent particle environment.
- Used MPC controller to simulate the human decision making and trained robotcar using MADDPG algorithm.
- Used "Human Social Force Model" to simulate human decision making and MPC controller to control robot car.

Teaching Experiences

MEAM 620 (Advanced Robotics) Teaching Assistant

University of Pennsylvania, School of Engineering and Applied Science

Projects

Feb 2020 – May 2020 Quadrotor Planning and Control | Python, ROS, CrazyFlies 2.0, EuRoc, Vicon

- Designed a geometric non-linear PID controller to let the quadrotor reach its desired goal without collision.
- Down-sampled the path derived from A* to get waypoints and implemented "Minimum Jerk" algorithm to get optimal trajectory for quadrotor to track.
- Added corridor constraints on keyframes to generate aggressive but safe trajectories.
- Implemented "Complementary Filter" and RANSAC to get accurate estimated states.
- Estimated the pose of quadrotor given by data from IMU, onboard stereo pair using "Error-state Kalman Filter".
- Reconstructed a 3D environment model given data from EuRoc dataset.

Autonomous Racing | ROS, C++, Python, F1tenth racing car

- Designed and implemented algorithms to let the "F1tenth" racing car finish loops as soon as possible. Ranked 1st among all racing teams.
- Implemented "Point-to-Line Iterative Closest Point (PLICP)" to estimate the pose of racing car given by data from IMU, Lidar and VESC.
- Generated a 2D map of Upenn Levine 2nd floor using "Google Cartographer".

Philadelphia, USA Aug. 2018 - May 2020

Shanghai, CHINA Sep. 2014 - June 2018

July 2020 – Present

Supervisor: Prof. Vijay Kumar

Aug 2019 – July 2020 Supervisor: Prof. Mark Yim

Spring 2021

Feb 2020 – May 2020

- Used "RRT*" algorithm and created local occupancy map to let the car avoid obstacles more efficiently.
- Implemented "Minimum Curvature" and "Covariance Matrix Adaptation Evolution Strat-egy (CMA-ES)" algorithm to get optimal racing trajectory.
- Designed "Obstacle-Dependent Gaussian Potential Field" algorithm to do obstacle avoidance.

RGBD SLAM | ROS, Python, THOR-OP humanoid robot

- Integrated the IMU orientation and odometry information from a walking humanoid with a 2D laser range scanner in order to build a 2D occupancy grid map of the walls and obstacles in the environment.
- Built a textured map by integrating additional camera and depth imagery from a Kinect One sensor.

Deep Learning for Computer Vision | *PyTorch, OpenAI gym*

- Generated adversarial images using deep neural network.
- Implemented "YOLO v1" to do extremely fast real time multi object detection.
- Implemented "Mask-RCNN", which combines object detection and semantic segmentation.
- Implemented a family of generative models including: "Variational Autoencoder (VAE)" and "Generative Adversarial Network (GAN)".
- Controlled OpenAI racing-car v0 using "Clipped Proximal Policy Optimization (Clipped PPO)" algorithm. **Ranked** (5/26)th in the final race.

Orienation Tracking based Panorama Stitching | *Python*

- Implemented a kalman filter to track three dimensional orientation.
- Given IMU sensor readings from gyroscopes and accelerometers, estimated the underlying 3D orientation by learning the appropriate model parameters from ground truth data given by a Vicon motion capture system.
- Generated real-time panoramic images from camera images using the 3D orientation filter.

6-DoF Pose Estimation of an Oilcan | PyTorch

- Trained a heatmap-based neural network which estimates the location of the keypoints in the oilcan image.
- Synthesized the heatmaps by identifying the location of each keypoint on the 2D image and placing a 2D Gaussian centered on this location on the corresponding heatmap.
- Used the coordinates of detected keypoints to estimate the 6-DoF pose of the object (oilcan).

Barrel Detection using Color Segmentation based on GMMs | Python

- Trained a GMM-based model to detect barrels in images and found the relative world coordinates of the barrel.
- Implemented algorithms to learn the color model, segment the target color and finally localize the target object.
- Hand-labeled the training sets and then built a color classifier and a red barrel detector.

UPenn Engineering Logo Projection | *Matlab*

- Estimated the homography that maps the video images onto the logo points.
- Warped the sampled points according to the homography.
- Used the correspondence between sampled points and homography to project the "Penn Engineering" logo to the goal in a football match.

Scale Invariant Detection | Matlab

- Approximated a Laplacian of Gaussian filter (LoG) by a Difference of Gaussians (DoG).
- Used LoG filter for blob detection, such as: sunflower, birds, balloons, etc.

Awards & Activities

Excellent Academic Performance (Top 10%) Donghua University	2016 - 2017
Excellent Volunteering 1st International University Climbing Champion	2017
Excellent Volunteering Shanghai International Marathon	2015 - 2017
Mathematics Modeling Contest (Rank: 7/102) Donghua University	2016
Mathematics Contest for Calculus (Rank: 3/351) Donghua University	2015
Outstanding Undergraduate Student (Top 3%) Donghua University	2015

Technical Skills

Languages: Python, C/C++, Matlab, HTML/CSS Deep Learning Frameworks: Pytorch, Tensorflow, Keras Developer Tools: Git, Docker, VS Code, Visual Studio, PyCharm Libraries: Cvxopt, pandas, NumPy, OpenCV, scipy, pygame, Matplotlib

Apr 2020 – May 2020

Aug 2019 – Dec 2019

Apr 2019 - May 2019

Apr 2020 – May 2019

Mar 2019 – Apr 2019

Mar 2019 – Apr 2019

Mar 2019 – Apr 2019