MEAM 620 Project Report: Quadrotor Planning and Control

Team 11: Dingding Zheng, Shane Rozen-Levy, Huaiyu Chen

I. INTRODUCTION AND SYSTEM OVERVIEW

In this project, we designed algorithms to control a
quadrotor. Controlled by a geometric non-linear con-
troller, the quadrotor could follow a predefined trajectory
and reached the goal without collision. We got the op-
timal trajectory by applying Down-sampling algorithm
(shown in section. III) to the shortest path which was
generated by A*. This lab focused on demonstrating the
planning aspect of robot capabilities. During the lab, the
CrazyFlie 2.0 was used for realistic demonstrations. A
microcomputer is responsible for low-level control and
estimation, while the onboard IMU provides feedback
of angular velocities and accelerations. The attitude
and thrust commands are sent to the quadrotor via the
CrazyRadio after being computed in python.

II. CONTROLLER
A. Introduction

In this project, we implemented a Geometric Non-
linear controller. This kind of controllers perform well
with aggressive maneuvers since these maneuvers have
high-speeds and sharp turns.

The position PD controller in vector form can be
written as [1]:

P — 55 — Ky (F —bp) — K, (r—rp) (1)

K, and K, are diagonal, positive definite gain matrices.
K, represents gain for proportional part, which mea-
sures how fast a system responses to a input error. A
large K, may cause the system to be unstable. K,
is the derivative gain. The derivative of the process
error is calculated by determining the slope of the error
over time and multiplying with K. Thus, a large Ky
improves the settling time and system stability. During
the experiment, we set K, and K, as: [8.5, 8.5, 10.0]
(1/s%) and [3.0, 3.0, 5.0] (1/s).

During the experiment, we found that K, and Ky
should be a bit smaller compared to ones in simulation.
This is probably because for realistic use, the quadrotor
may not be able to fly as you wish. We know that
by setting large K, and K, the quadrotor will get
large inputs u; and us which intend to drive itself
aggressively. But there exists some hardware limitations
in CrazyFlie 2.0, such as maximum speed of the motors.
To deal with this problem, it’s better to tune down values
of K, and K for good flight performance.

After calculating the desired acceleration using equa-
tion 1, we calculated the target force using equation 2.
Finally in order to get the commanded force, we project
Fdes into quadrotor z direction, thus u; = b3TF des

Fies — mi 4+ és3mg 2)

From here we calculated the desired orientation for
the quadrotor using equation 6 where ¥ is the target
yaw angle.

des Fdes
N 2 ©
cos Y
ay = |sinyr @)
0
des bges X a,
P b ®
Rdes — [bges % bges7b§les7bges] (6)

During the experiment, the desired yaw angle was
always set as 0. In this case, the quadrotor remained
pointing to one direction. Additionally, we did not
use our attitude controller in the hardware experiments
because the CrazyFlie 2.0 was running its own internal
attitude controller and thus took in as commands a target
attitude and thrust.

B. Testing

For controller testing, we first chose a single point
[0.5, 1.0, 2.0] (m) and let the robot ”jump” to that point.
The testing plots are provided in Fig. 1. This data is from
simulation. The bags we collected in lab did not do a
good job demonstrating the step response of the system
because the trajectory generator we used in lab 1 was
continuous in position and velocity with a small target
acceleration.

As we can see from the plots: The system is un-
derdamped on x and y direction (0 < ¢ < 1), while
it’s critically damped on z direction ((= 1). In the
z,y direction the rise time is about 1 sec, while the
settling time is about 1.5, sec. In the z direction the rise
and settling time are around 2.5-3 sec. Additionally, the
system converges with zero steady state error.

In order to test the performance when controller
dealing with multi-points, we chose a waypoint list as:
[[0.1, 0.1, 1.0], [O.1, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 0.0,

Position

[
o v o

1 !
No< x

position, m

N
\

e
=)

T
Velocity

2.04 x
8 1.5 Yy
E z
Z 10
5]
2
¢ 05

0.0

T
0 1 2 3 4 5 6
time, s

Fig. 1. Position & Velocity vs Time (single point). From simulation.

1.0], [0.1, 0.1, 1.0]] (m). We saved the bag file for this
test and drew plots. The plots for multi-points testing
are shown in Fig. 2.

Position
1.00 |
£ 0.75
g
2 0501
3
2 0.25
0.00
.
Velocity
. X
w01 i
£ . oz
Z -2 .
o
S
[
> —4 4
-6 L ; ; ; :
0 5 10 15 20

vicon_time, s
Fig. 2. Position & Velocity vs Time (multi-points) From experiment.

Given a series of waypoints, the controller success-
fully drived the quadrotor to desired places. Overall, the
flight performance was great.

III. TRAJECTORY GENERATOR

After finding a path using A* through the map [2], we
down-selected points using the algorithm 1. From there
we used a bang bang controller with an acceleration of
0.5m/s?. Thus the time between points, 7' = 24/d/a
where d is the distance and a is the acceleration.

The equations for the trajectory are in equation 9
where 7 := ¢t — T'/2. Since this trajectory is a straight
line through space, in order to use these equations with
the quadrotor, we simply multiplied x(t), 4(t), &(t) by
the unit vector describing the direction from one way
point to the next way point.

Algorithm 1: Down-sampling Algorithm

Result: Down sampled list of points with no
collision
Let U be the dense list of points outputted by
the path finding algorithm and let V' be the
output list of points initially empty;
i=2,j=0;
Add Uy to V
while i < length (U) do
if is collision between U; and V; then
add U;_; to V
j ++; i+
else
| i
end
add Ug,qg to V

end

a t<T/2
it)=<{ —a T/2<t<T 7
0 t>T
at t<T/2
i(t)=<al/2—a(t) T/2<t<T (8)
0 t>T
1/2at? t<T)/2
z(t) =< —1/2at® +aT/27 +d/2 T/2<t<T
d t>T

(€))

The resulting trajectory has continuous position, and
velocity in R3 and has finite, though discontinuous,
accelerations. This results in infinite jerk and snap
commands. Fortunately with a low enough commanded
acceleration, the quadrotor could handle the infinite jerk
and snap. Figure 3 demonstrates the continuous nature of
the position and velocity trajectories generated by bang
bang control.

The infinite jerk and snap trajectory is however benefi-
cial, in that the quadrotor always travels in straight lines
and is much less likely to deviate from the A* path and
hit obstacles. In comparison, a polynomial trajectory,
although smoother, requires either post processing of
the trajectory or more map resolution to guarantee
obstacle-free trajectories in real time (as opposed to
simply changing parameters in simuation). Both options
can be computationally expensive, depending on the
dimensionality and size of the map. For this reason we
chose bang bang control over spline fit for trajectory
generation.

Map 2 Position and Velocity vs. Time Position

. X
24
. . / Py
5 o 19 £z ¥ 4 .z
2 2
2 g 0
(=3 (=}
1
Velocity
15 -
u o
£ £ 1.0
z z
s = 054
=2 2
2 L 00
051
2 1 6 8 10 1 1 16 0 5 10 15 20
vicon_time, s vicon_time, s
Fig. 3. Position and Velocity vs. Time for Map 2. Notice how Fig. 5. Position and Velocity vs. Time for Map 1.
the position and velocity are continuous, while the acceleration is
discontinuous, though finite.
& B. Test 2

Start: [2.5, 1.5, 0.9] (m), Goal: [2.5, -1.5, 0.9] (m).
Plots are shown as Fig. 6 and Fig. 7.

—— Dense A* Path
IV. MAZE FLIGHT EXPERIMENTS ® Sparse Waypoints
— Trajectory
« Actual Flight

Z(m)

5
4
3
2
1
o]
A. Test 1

In Map 1, the quadrotor starts from [-1.5, -1.5, 0.9] -2

(m) and ends at [2.5, 1.5, 0.9] (m). The experiment plots
are shown as Fig. 4 and Fig. 5.

1
X
fmy 5

Fig. 6. 3D Path, Waypoints, Trajectory, Actual Flight for Map 2.

—— Dense A* Path

® Sparse Waypoints Position
—— Trajectory
« Actual Flight — 2 2 X
4 E .y
3 N E * z
2 g 1
1 h=}
0 Z 0 .
a
—14 .

velocity, m/s

T
5 10 15 20 25

1
X (m) 2 -2 vicon_time, s

Fig. 4. 3D Path, Waypoints, Trajectory, Actual Flight for Map 1 Fig. 7. Position and Velocity vs. Time for Map 2.

C. Test 3

Start: [2.5, -1.5, 0.9] (m), Goal: [-1.5, -1.5, 0.9] (m).
Plots are shown as Fig. 8 and Fig. 9.

—— Dense A* Path
e Sparse Waypoints
— Trajectory
Actual Flight

(w)z

Fig. 8. 3D Path, Waypoints, Trajectory, Actual Flight for Map 3.
Position
N j . x
oy
£
= 11 i
S
£
1
I \)elocity I
0.5 4 =
@ 004 y
£ z
é -0.5
% -1.0
-1.5

vicon_time, s

Fig. 9. Position and Velocity vs. Time for Map 3.

D. System Analysis

For clearer system performance analysis, we com-
puted distance for desired trajectory and actual flight to
get the tracking error. The tracking errors are computed
in an accumulative way and can be view as: Table L.

Map Desired Actual Error (m) | Percent
Distance (m) | Distance (m) Error
1 6.0851 6.6142 0.5291 8.0 %
2 7.7684 11.9351 4.1667 34 %
3 5.2915 5.5247 0.2332 4.2 %
TABLE I

TRACKING ERROR TABLE.

The error increases with larger flying distance and
more sharp turns. The large error in distance traveled for
map 2 is likely due to an issue with the Vicon system.
The Vicon reported a speed of 50 m/s at t=22 sec. We
believe that the quadrotor was not moving at 50 m/s
and this was simply an erroneous measurment (possibly
the Vicon picked up a different quadrotor at that time).
Overall, our quadrotor’s doing a fantastic job following
the desired trajectory.

E. Future Work

Our trajectories can easily be more aggressive. In
simulation the quadrotor can fly through these maps with
an acceleration of 3.5m/s? instead of 0.5m/s%.

In order to speed up the trajectory, we can use
trajectory optimizaion using direct collocation. Although
this may greatly increase the solve time due to having
to solve a nonlinear program, direct collocation can
optimize for time while allowing for curved trajectories.
Direct collocation can also allow for more constraints
being set such as region keepout at the obstacles and
jerk limits.

We can also use a different trajectory planner. Bang
bang control is a minimum time controller but in this
setting where we have multiple waypoints, it may be
slow because the quadrotor has to stop at each waypoint.
A minimum jerk or minimum snap planner may result in
smoother trajectories that the quadrotors can follow with
less errors. The trajectories can also be more aggressive
where the overall speed is faster. The trade-off here
would be more computation devoted to guaranteeing no
collision.

If we want to make the bang-bang trajectory more
reliable, the easiest manner will be to add jerk limits to
the trajectory while keeping the zero end velocity. There
are still closed form solutions for this situation and the
trajectories can still be straight lines in R3.

If we have one more section for this lab, it will be
interesting to implement jerk limits to the trajectory and
see how the finite jerk affects the tracking error with the
same controller. Alternatively we can let our quadrotor
fly through more interesting obstacles such as a hula-
hoop.

F. Reference

[1] D. Mellinger and V. Kumar, “Minimum snap tra-
jectory generation and control for quadrotors,” in Proc.
of the IEEE Int. Conf. on Robotics and Automation,
Shanghai, China, May 2011.

[2] T. Lee, M. Leok, and N. McClamroch, “Geometric
tracking control of a quadrotor uav on SE(3),” in Proc.
of the IEEE Conf. on Decision and Control, 2010.

