
F1tenth Autonomous Racing: Project Report
Shivangi Misra

shivangi@seas.upenn.edu
Dingding Zheng

zddkj@seas.upenn.edu
Weiyi Tang

tangwy@seas.upenn.edu

I. INTRODUCTION

”F1tenth” is an open-source, small-scale racing car platform
widely used for teaching and research in safe autonomy.
Maneuvering a racing car to finish loops in minimum time
has been studied for decades. However, it’s always compu-
tationally expensive and infeasible to solve this problem by
real-time trajectory planning. [1] In this project, we generated
a velocity profile to find the maximum permissible speed of
racing car on each waypoint on the path. Then, we use CMA-
ES (Covariance Matrix Adaptation - Evolution Strategy) to
generate the desired path for vehicle to track. The generated
path has a relatively small curvature which allows the racing
car to run at high, steady speed. Pure pursuit is used as
the vehicle controller. For obstacle avoidance part, we imple-
mented ODG-PFM (Obstacle-Dependent Gaussian Potential
Field) and compared its performance VS. RRT*. In order to
measure the performance of these two algorithms, we setup
several testing maps and added noise to the environment.

II. TRAJECTORY GENERATION

In order to obtain an optimum trajectory on the given map,
we try trajectory optimization using the Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES). However, we did
not include velocity of the racecar over the path as part of the
CMA-ES optimization problem. Instead we chose to estimate
speed profile separately for each path generated iteratively to
ensure the car operated at speeds that considered tire-road
friction and prevented it from slipping.

A. Velocity Profile Estimation

We generated velocity profile in order to find the maximum
permissible steady state vehicle speed when given zero lon-
gitudinal force. [1] To generate a quick racing trajectory, we
parameterized the path as a curvature K, which is a function
of distance along the path s. [2] We divide our reference
trajectory into smaller segments that have piece-wise constant
curvature. The curvature is decided for these segments by
fitting a circle to the arc segment.
Ux is the vehicle forward velocity. We ignored vehicle mass

transform and other topography effects and got the maximum
speed as following equation by: [3]

Ux(s) =

√
µg

|K(s)|
(1)

Here, µ is the tire-road friction, equal to 0.523 and g is teh
acceleration due to gravity. We know that for real racing
car, there is a maximum engine force constraint. Thus, we

first used forward and then backward integration to smooth
the velocity profile curve. In this method, the velocity of a
given point is determined by the velocity of the previous point
and it’s maximum available longitudinal force for acceleration
Fx,accel,max and force Fx,deccel,max for deceleration. The
speed update format is shown as below [4]:

Ux(s+ ∆s) =
√
U2
x(s) + 2ax, accel,max ∆s (2a)

Ux(s−∆s) =
√
U2
x(s)− 2ax, decel,max ∆s (2b)

The plot of velocity profile we got is shown in Fig. 1.Our
reference path has 10,000 waypoints. And the blue curve
represents the original velocity profile while the red one
represents the updated profile after being ”smoothed”. The
acceleration limits are set to be 7.51ms−2 and for deceleration
as 8.26ms−2.

Fig. 1: Velocity Profile

The final speed profile we obtain is scaled and processed
so that is constrained within speed limits of the race. The
resulting speed profile is shown in Fig. 2.

B. Minimum Time

The CMA-ES algorithm is used to solve problems that
require non-linear or non-convex numerical optimization. It
takes inspiration from biological evolution where candidate
solutions are spawned and ranked. The best solutions are then
used to spawn a new class of solutions, slowly refining the
parameter search in the direction that promises optimality.

We decided to pick a minimum-time trajectory which the
race car would follow to finish laps around the race track faster
than its opponents. A sample trajectory was obtained by run-
ning the car around the track using a reactive planning (follow

Fig. 2: Processed Velocity Profile

the largest gap) algorithm. To use the CMA-ES optimization
algorithm, we parameterize the trajectory using the magnitude
of displacement in the direction of normal to the tangent of
the curve at each point as shown in Fig. 3. We craft the fitness
function to calculate the velocity profile for each of the current
candidates and use the velocity profile to calculate how much
time the racecar would take to go around the track once. This
value helps us rank candidate solutions from best to worst. The
covariance matrix is used to express the pairwise dependencies
of the variables and the covariance matrix adaptation strategy
is used to update this matrix. From the mean and covariance
matrix, the distribution at every iteration from which solutions
are drawn is defined and on repeatedly updating these values,
the algorithm is said to have converged when the fitness value
of candidate solutions is less than a threshold minimum or if
the user specified total number of iterations is exceeded,

Fig. 3: Trajectory parameters [6]

We use the CMAES MATLAB implementation available
online (by Hansen et al.) and modify the fitness function
used to solve the problem at hand. The resulting optimized
trajectory (orange) is shown in Fig. 4 where the original path
is drawn in blue.

III. RRT*

RRT* is the optimized version of RRT, which is a path
planning algorithm that relies on randomly generating points
in an obstacle free area and chaining the root node to its closest
neighbor point and so on, to build a graph through which

Fig. 4: Minimum time trajectory

a path to the goal is found. RRT* is an improvement as it
includes two additional features, unlike RRT. RRT* records
the distance each node (sampled point) has travelled relative
to its parent node as a cost of the node. If a close-by node with
a cheaper cost is found, then it replaces the original node. The
second difference is that the tree is rearranged when adding a
new node. An existing node of the tree which is closest to the
new node, not necessarily having to be at the end of a branch
is taken to be the new node’s parent. This allows RRT* to
generate smoother paths than RRT and considerably assists
the pure pursuit controller on the race car, in following the
reference path with more stability. The pseudo code is shown
in Algorithm 1.

Algorithm 1 RRT*

1: procedure RRT*
2: G(V,E) . Initialize graph with root node
3: for all iter ≤ max iterations do
4: Xnew=RandomPosition()
5: while Obstacle(Xnew) == True do
6: Xnew = RandomPosition()
7: end while
8: Xnearest = Nearest(G(V,E), Xnew)
9: Cost(Xnew) = Distance(Xnew, Xnearest)

10: Xbest, Xneighbors=findNeighbor(G(V,E),Xnew,θlimit)
11: Link = Chain(Xnew, Xbest)
12: for all X ′ in Xneighbors do
13: if Cost(Xnew)+Distance(Xnew, X

′)<Cost(X ′)
then

14: Cost(X ′)=Cost(Xnew)+Distance(Xnew, X
′)

15: Parent(X ′) = Xnew

16: G += Xnew, X
′

17: end if
18: end for
19: end for
20: return G
21: end procedure

Some additional details to note about our implementation
of the algorithm is that we added an angular constraint θlimit

that constraints the growth of branches in all radial directions
and focuses computational effort in building a path towards
the front of the car. The frequency at which RRT* is able
to return valid paths to the car is of importance because the
car’s movements become more unstable if there is any latency
in the drive topic publishing rate. Therefore, when far away
from an opponent car the goal node for the ego car is set as a
point ”look-ahead” distance away from its current position on
the optimal reference trajectory and RRT* needs lesser and
focused sampling near this goal. When the opponent car is
close to the ego car, the RRT* algorithms sampling iterations
are increased and the region to be sampled around the goal
node is also widened. In addition, to ensure that the car does
not aggressively oscillate in following a shorter path returned
by RRT*, the ego car chooses to follow points that are further
up the tree.

IV. ODG-PFM

In this section, we describe the Obstacle-Dependent Gaus-
sian Potential Field works, how did we implement this in detail
as well as what did we do to improve behavior of ODG-PFM.

A. Method Theory

Just like traditional Potential Field methods, ODG-PFM also
utilizes an artificial potential field consisting of an attractive
field and a repulsive field to push car to destination without
hitting any obstacles. Unlike any other method using vector
to guide car to some specific direction, ODG-PFM finds the
angle with minimum values from the total field function, that
is to say, we can directly collect data from 2D laser scan, then
compute total field based on the each beam angle, finally find
the best angle to be our steer angle.

Before talking about deep theory, we need to clarify how
our laser scan collect data and what kind of data format we
have. We are using 2D laser, which can be illustrated in figure
5. Each scan beams will give us distance from car to end point,
so we will have a range of distant data like figure 6 shows.
In our situation, we will have 1080 laser beams with angle
ranging from -2.7 to 2.7.

Fig. 5: Laser Scan Finder [5]

So let’s beck to ODG-PFM theory part, the main idea behind
this method is that, after receiving distance data from the

Fig. 6: Corresponding Sensor Data [5]

range sensor, enlarge the obstacles with regard to the vehicle’s
width, and construct a Gaussian (repulsive) potential field from
them. Then it calculates the attractive field from the yaw angle
information from odom topic. The total field is made of these
two field, and, from it, it chooses the angle with the minimum
total field value.

As figure 7 shown, if some data are spatially continuous
within the threshold, they are considered as obstacles. So
in this case we show, there are two obstacles. In order to
implement ODG-PFM, we need to compute three values for
each obstacles: the average distance to each obstacle (dk), the
angle occupied by each obstacle (φk) and half of the angle
occupied by each obstacle (σk).

Fig. 7: Sensor data and threshold distance [5]

In real system, car’s width should be taken into account.
Then we should recalculate φk:

φk = 2σk = 2 atan2(dk tan
φk
2

+
wcar

2
, dk) (3)

where dk is the average distance to the kthobstacle, and wcar

is the car’s width. The illustration can be seen in figure 8. By
enlarging the φk, car will perform well when avoiding relative
small obstacles.

Gaussian likelihood function (repulsive field) of obstacles
are calculated as:

Fig. 8: Enlarge the angle occupied by obstacles [5]

fk(θi) = Ak exp(−
(θk − θi)2

2σ2
k

) (4)

This is a function of θi. And the subscript i means that the ith
data segment of the sensor data and it is the sequence number
of each angle. Each Gaussian likelihood function becomes a
component of the repulsive field.The coefficient Ak should be
set in order that the Gaussian likelihood of each obstacle fully
embraces the angle occupied by each obstacle. Subsequently,

d̃k = Ak exp(−
(θk − (θk ± σk))2

2σ2
k

) = Ak exp(−
1

2
) (5)

Thus,

Ak = d̃k exp(
1

2
), (6)

where d̃k = dmax−dk. dmax is the maximum detection range
of the range sensor.

Fig. 9: Gaussian likelihood of each obstacle [5]

In the figure 9, the angle occupied by and the Gaussian
likelihood of the obstacles are shown. This explains that
the Gaussian likelihood of each obstacle fully embraces the
occupied angle at d̃k.

Then we can obtain the repulsive field by summing up all
of the Gaussian likelihood function of obstacles into Eq.7.

frep(θi) =

n∑
k=1

Ak exp(−
(θk − θi)2

2σ2
k

) (7)

This is also a function of angle θi. The attractive field is
calculated as

fatt(θi) = γ|θgoal − θi| (8)

The total field is calculated by adding these two fields. Since
both of these two fields are function of θi, the total field is
also a function of θi:

ftotal(θi) = frep(θi) + fatt(θi) (9)

Finally, the angle minimizing the total field is chosen as the
heading angle. The small circle in figure 10 points out this
angle.

Fig. 10: ODG-PF force field [5]

In conclusion, this method has some features that are not
like in classical potential field-based methods, First, instead of
putting the range sensor data into equation, ODG-PF defines
obstacles (occupied angle, average distance, etc.) from range
sensor data and then calculates the repulsive fields of the
obstacles. Second, the repulsive field and the attractive field
of ODG-PF are functions of angle; that is to say, they are not
vectors. In the classical potential field, the direction is decided
by the direction of the total vector of the repulsive field and the
attractive field. Thus, ODG-PF is very robust that even if there
are small changes in the environment, the trajectory is not so
much affected by them. Mathematically, the main difference
between PFM and ODG-PF is that the attractive field and the
repulsive field (as well as the total field) are angle functions
while all of the fields in PFM are vector values.

B. Implementation and Simulation

In this part, we will introduce how we implement OG-PFM
in Rivz simulator by using ROS.

First, we need to find three important variables for each ob-
stacles: average distance (dk), the angle occupied by obstacles
(φk) and half of the angle occupied by obstacles (σk). We first

Parameter Value
Velocity (m/s) 4.5

dmax(m) 50
γ 5

Look Ahead Distance (m) 2
Angle Gain 0.8
wcar(m) 0.2

Obstacle Threshold (m) 1.0

TABLE I: Parameters of Simulation

wrote a for loop to go through all the sensor range to find the
number of obstacles, the first index of each obstacle and the
last index of each obstacles. Then utilizing the information
we got above to compute the above three variables we need
to have. After this we would have three list storing dk, φk and
σk respectively. Then writing another for loop to go through
all the θi to compute the repulsive field.

As for attractive field, firstly, we should find the goal point
from the waypoints we have. We set a look ahead distance
to find the points we want to track and recorded the speed
we would use, and if there’s no point lie in this look ahead
distance, we used interpolation to generation a new point to
track. After finding the goal point in global coordinate, we
subscribed orientation data from odom topic, then computed
rotation matrix to convert global coordinate to car local frame.
Finally, we were able to find θgoal and construct attractive field
function.

After repulsive field and attractive field are construct, we
could add them together to get total field. In order to compute
the heading angle, we wrote a for loop to go through all
the elements in total field to find the minimal one. Finally,
multiplying it by a gain to get steer angle.

We also made some improvement. First of all, in order
to decrease the vibration of car, we wrote an algorithm to
stabilize our car. When we tried to find the best angle to be
our heading angle, we set a range above the global minimal,
and inside this range there are few candidates. We would pick
the one which is closest to goal point. To implement this,
we first computed the mean value of total field, then we kept
elements whose value is less than mean*0.02, which would
give us roughly 10 candidates. Finally, we find one has the
smallest index distance to θgoal. After implementing this, our
car would be more stable than before.

In the simulation, some parameters we set can be seen in
TABLE I. γ is the value that we should choose. If γ is too
small, the vehicle will avoid obstacles but the path will be
inefficient whereas if it is too large, the vehicle will be more
likely to collide with obstacles. The γ value was chosen as
5.0 by executing several simulations. Look ahead distance is
also a very important parameter. If it’s set small, the car will
track the waypoints more aggressively, that is to say, the car
will make more sharp turning to track each point. And if it is
relative large, the car will have a more smooth performance.

V. TEST RESULT

After making OG-PFM local planner work, we need to
compare its performance with another local planner: RRT*

which we already implemented before.
In order to compare their performance, we set three different

tasks. The first task will test how good they are when avoiding
static obstacles. The second task will test how fast they can be
when there’s no obstacle. The third task will test how robust
they are when we added noise to laser scan data.

A. Task1

In this task, we will test how good OG-PFM and RRT* are
when avoiding static obstacles. So we make two different level
maps, as you can see in figure 7.

Easy Map Hard Map

Fig. 11: Test Maps

Also we want to test how fast these two methods will
converge when speed increases, so we set three different speed
level: 1.5 m/s, 3 m/s and 4.5 m/s. As a result, we run our car
with different speed level in two maps respectively, then see
their performance. The test result can be seen in TABLE II.

From the result, we can see RRT* did a great job and passed
all the case, while OG-PFM isn’t able to pass hard map when
speed increases, which suggests that OG-PFM has a relative
small converge rate, that is to say, it will require more time to
converge to a optimal path, so when speed increases, it doesn’t
have enough time to generate a path to avoid obstacles.

Also, during test, we found that OG-PFM is so sensitive to
obstacles. For instance, if we set obstacle threshold to be 1m,
our car will have some avoiding behavior when the obstacle
is 1m away from it, which may cause vibration and even loss
control sometimes.

B. Task2

In this task, we will let our car run without any obstacle
and record the time they will take for 2 laps. And the speed is
set as 4.5 m/s for both methods. The result is in TABLE III.

As the table shown, OG-PFM even performed better than
RRT*. When there’s no obstacle, OG-PFM can be considered
as pure pursuit method, since only attractive field works. So
compared to RRT*, OG-PFM may be more stable when on
obstacle appears in their path.

C. Task3

For task3, we artificially add random noise to laser scan
data collected from LaserScan topic. To be more specific, for
each laser angle, we random generate noise between -0.1 and

TABLE II: Task1 Result

Method (speed (m/s)) Easy Map (1.5) Easy Map (3) Easy Map (4.5) Hard Map (1.5) Hard Map (3) Hard Map (4.5)
RRT* pass pass pass pass pass pass

OG-PFM pass pass pass pass failed failed

TABLE III: Task2 Result

Method Time for 2 laps (s)
RRT* 12.96

OG-PFM 11.52

TABLE IV: Task3 Result

Method 1.5 m/s 3.0 m/s 4.5 m/s
RRT* pass pass pass

OG-PFM pass failed failed

0.1. Then running our car in easy map with different speed
level. The result is in TABLE IV.

From the result, RRT* easily passed all cases, while OG-
PFM failed when speed increases. During the test, OG-PFM
method vibrated a lot with noise. As we discussed before, OG-
PFM is so sensitive to obstacles, so when noise is added, it
would become even more unstable. It did pass one case, but
actually it vibrated a lot and it took the advantage of low speed
to have more time to compute optimal path. But when speed
increases, it failed.

VI. DISCUSSION

In our comparison between RRT* and OG-PFM, we found
that overall RRT* would be a more reliable candidate method
for static obstacle avoidance. In a racing scenario however, the
opponent cars are dynamic obstacles and in a situation when
the ego car is close to overtaking the opponent car, it becomes
imperative to have a mechanism to ”predict” the opponent
car’s next step so as to avoid a collision. Some strategies that
we introduced into our system are treating the opponent car
as a static obstacle and slowing down when overtake is not
possible at extremely close quarters using the static obstacle
time-to-collision metric, or when more maneuvering space
is available, extending the dimensions of the obstacle field
around an opponent car so the ego car chooses a longer path
at a safer distance from the opponent car to overtake. We
believe that RRT* is able to generate safe paths at a sufficient
frequency to allow us to use our method of treating dynamic
obstacles as blown up static obstacles to avoid collision.
However, this method may not be robust enough to handle
some edge cases that did not show up in the simulated races
between the ego car and an instructor provided opponent car.
While the blame for which agent causes a collision remains
ambiguous at this point, with the handicap of not having an
active predicting strategy for the behavior of an opponent car,
the ego car will not be able to avoid collision if the opponent
car swerves suddenly into its path. The main controller on
the car is pure pursuit and we observe that on careful tuning
the car does follow its path somewhat accurately but does not
take the car dynamics into consideration, unlike a receding
horizon model predictive controller. It is because of this that

we observe the car taking wider turns than the reference
trajectory dictates. With an MPC controller, much more robust
control would have been possible. For future improvements in
this project, we would like to implement a MPC controller
for these reasons along with a more robust dynamic obstacle
avoidance strategy.

REFERENCES

[1] Nitin R. Kapania, John Subosits, J. Christian Gerdes. A Sequential
Two-Step Algorithm for Fast Generation of Vehicle Racing Trajectories.
DSCC2015-9757, V003T50A005.

[2] Lipp, T., and Boyd, S., 2014. “Minimum-time speed optimisation over a
fixed path”. International Journal of Control, 87(6), pp. 1297–1311.

[3] Subosits, J. K., and Gerdes, J. C., 2015. “Autonomous vehicle control
for emergency maneuvers: The effect of topography”. American Control
Conference (ACC), pp. 1405–1410.

[4] Velenis, E., and Tsiotras, P., 2008. “Minimum-time travel for a vehicle
with acceleration limits: Theoretical analysis and receding-horizon im-
plementation”. Journal of Optimization Theory and Applications, 138(2),
pp. 275–296.

[5] Jang-Ho Cho, Dong-Sung Pae, Myo-Taeg Lim.et al. A Real-Time Ob-
stacle Avoidance Method for Autonomous Vehicles Using an Obstacle-
Dependent Gaussian Potential Field. Volume 2018, Article ID 5041401,
15 pages.

[6] Fabian Christ, Alexander Wischnewski, Alexander Heilmeier, Boris
Lohmann. (2019) Time-optimal trajectory planning for a race car consid-
ering variable tyre-road friction coefficients. Vehicle System Dynamics
0:0, pages 1-25.

