CIS 680 PROJECT REPORT

Dingding Zheng(Penn ID: 62643280), Mengwei Zhang(Penn ID: 66376864), Huize Huang(Penn ID: 50132108)
University of Pennsylvania
(Dated: December 19,2019)

CarRacing-v0, a environment in OpenAl, is a typical continuous task of learning from pixels.
PPO with clipped objective is used to solve the problem. By adding soft constraints to objective
function, the agent state is restricted in the Trust Region which ensures better stability and model

performance.

Approach: During the final project, we decide to implement PPO algorithm and make some improvements.

I. INTRODUCTION

CarRacing-v0, a environment in OpenAl, is a typical
continuous task of learning from pixels. The state of this
environment consists of 96*96 pixels. For each frame and
track tile visited, the reward is -0.1 and +1000/N, where
N is the total number of tiles in track. For Deep Re-
inforcement Learning, researchers have proposed several
algorithms as following;:

A. Deep Q-Network (DQN)

In 2015, DQNJ1] beat human experts in many Atari
games. In reinforcement learning, Q-learning learns the
action-value function Q(s,a), which is a standard evalu-
ating the performance of taking an action at a particular
state. In Q-learning, we build a memory table Q[s,al
and sample an action from the current state. And we
get an action a’ from table which maximizes value of Q
function. A Deep Network DQNJ2] is proposed to ap-
proximate Q(s,a) to solve the memory crash issue caused
by large combinations of states and actions.

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s, = {x, } and preprocessed sequence ¢, =¢(s;)
For t=1,T do
With probability ¢ select a random action a,
otherwise select a, =argmax, Q(¢(s;).a; 0)
Execute action a; in emulator and observe reward r, and image x; + |
Set 541 =S¢,@.% 41 and preprocess ¢, ., =P (s;41)
Store transition (¢,.a.,r,¢,,,) in D
Sample random minibatch of transitions (1/), NORR 1) from D

7j if episode terminates at step j+ 1
Sety;= rj+7y maxy Q((I)H,.a’: ()’)

Perform a gradient descent step on (y, - Q(d)}.a,: ()))Z with respect to the
network parameters 0
Every C steps reset Q= Q
End For
End For

otherwise

B. Trust Region Policy Optimization (TRPO)

Policy Gradient methods|[3] are classical in Reinforce-
ment Learning field. It’s basic principle is to use gradi-

ent ascent to follow policies with the steepest increase in
rewards. But there exists an issue that the first-order op-
timizer is not that accurate which may cause the agent
make bad moves and ruin the whole training process.
Thus, TRPO[4] is proposed to solve this problem.

For Policy Gradient method, it computes the steepest
ascent direction for the rewards and update the policy
towards that direction

9= Ve (1) = _
Ory1 =0k +ag

Ere [>oi20 7 Velogma (arlse) A™ (s¢, ar)]

But in this case, applying a large learning rate may
make the algorithm suffers from convergence problem
badly. Thus, TRPO[5] is proposed to constrain the pol-
icy changes so the agent may not make too aggressive
moves.

TRPO updates policies by taking the largest step pos-
sible to improve performance, while satisfying a special
constraint on how close the new and old policies are al-
lowed to be. The constraint is expressed in terms of
KL-Divergence, a measure of (something like, but not
exactly) distance between probability distributions.

For the trust region in TRPO, we determine the maxi-
mum step size that we want to explore and then we locate
the optimal point within it. And the trust region can be
shrunk if the policy is changing too much.

TRPO trains a stochastic policy in an on-policy way,
which means it explores by sampling actions according
to the latest version of its stochastic policy. Both ini-
tial conditions and the training procedure determine the
amount of randomness in action selection.

C. Proximal Policy Optimization (PPO)

PPO[6] is great for it’s easily hyperparameter tuning.
For traditional reinforcement learning algorithms, they
requires substantial effort in tuning to get good results.
The occurence of PPO strikes a balance between sam-
pling complexity, ease of implementation and ease of pa-
rameter tuning. It tries to compute an update at each
step that minimizes the cost function while ensuring the
deviation from the previous policy is relatively small.

This is different from normal policy gradient, which
keeps new and old policies close in parameter space. But

even seemingly small differences in parameter space can
have very large differences in performance—so a single
bad step can collapse the policy performance. This makes
it dangerous to use large step sizes with vanilla policy
gradients, thus hurting its sample efficiency. TRPO[7]
nicely avoids this kind of collapse, and tends to quickly
and monotonically improve performance.

PPO has become the default reinforcement learning
algorithm at OpenAl because of its ease of use and good
performance. Details of algorithm is shown as following:

1. Input: Initial policy parameters 6y, initial value
function parameters ¢g.

2. Hyperparameters: KL-divergence limit §, back-
tracking coefficient «, backtracking maximum steps
K

3. for k=0,1,2,...do

4. Collect set of trajectories Dy, = 7; by running
policy 7 = 7(6k)

5. Compute advantage estimate, A, based on Va,

6. Estimate policy gradient

T
~ 1 i
G = o Z ZV@ log g (at|st)y, At

T7€D t=0

7. Compute
jk: ~ H-kilgk (1)

Where Hj, is the Hessian of the sample average KL-
deivergence

8. Backtracking

- 26
9k+1 = Hk + o’ fik (2)

xk Hkl’k

9. Fit value function

T
P41 = arg m(gn |Di| T Z Z (V¢ (st) — Rt)2 (3)

T7EDE t=0

10. end for

II. CODE STRUCTURE

—' class Env

—' fun: record_reward |
—| class NeuralNet |

fun: _init_weights |

class Agent

fun: choose_action |

fun: update

IIT. OUR APPROACH

We decide to choose PPO algorithm to finish this
project since it derives from classical Policy Gradient
method and alternates between sampling data through
interaction with the environment.

Compared to TRPO, PPO simply uses linear approx-
imation. Moreover, PPO uses multiple epochs mini-
batches update instead of performing only one gradient
update as per sample like policy gradient methods.

There are two ways of improving PPO algorithm and
share something in common. The first one is "PPO with
Adaptive KLL Penalty”. It adds a soft constraint to the
objective function for optimization.
maximize Et

0 Toiq (atlst

B sets weight of the penalty. it defines the severity of
penalty how the new policy is different from the old one.
When the KL divergence of two policies is higher than
the target value, 8 decreases. Details of the algorithm is
shown as following:

creladsd S 4| — B, (KL [may,, - |se) w0 (1s0)]

Algorithm 4 PPO with Adaptive KL Penalty

Input: initial policy parameters 6y, initial KL penalty 3o, target KL-divergence &
for k =0,1,2,... do

Collect set of partial trajectories Dy on policy 7 = m(0k)

Estimate advantages A:” using any advantage estimation algorithm

Compute policy update

Oks1 = arg mﬂax Lo, (0) — ,BkEKL(OH&)
by taking K steps of minibatch SGD (via Adam)

if D (0k41]|0k) > 1.56 then
Br1 = 2Bk

else if Di(0k+1]|0k) < 3/1.5 then
Brt1 = Bi/2
end if
end for

The second one is "PPO with Clipped Objective”. In
this algorithm, two policy networks: current policy and
old policy are used to compute ratio which measures the
difference between two policies. By importance sampling,
a new policy can be evaluated with samples collected
from an older policy.

mo(at]st) At}

maximize [E; [
0 Togrq (atlst)

re(60) = mo (atlse) /7o, (ar]se)
The new objective function can be modified as:

L§HP(0) = E

TN

-
3 [min(rt(G)A:”‘,clip(rt(G), 1-el4e) A;’k)]]
t=0

When the probability ratio falls outside the range (1 - &,
1 + &), the advantage function will be clipped.

Details of the algorithm is shown as below:

Algorithm 5 PPO with Clipped Objective

Input: initial policy parameters 6o, clipping threshold e
for k=0,1,2,... do
Collect set of partial trajectories Dy on policy m = w(6x)
Estimate advantages ﬁf" using any advantage estimation algorithm
Compute policy update
Ocsr = argmax L5,(6)

by taking K steps of minibatch SGD (via Adam), where
T
L5"0) = B, {Z [min(re(O)AT*, clp (r(6),1 - €1 +) AT*)]}
=

end for

These two algorithms both set constraints to param-
eters updating process. During the implementation, we
choose "PPO with Clipped Objective” for its simple im-
plementation. Besides, it be optimized using Adam op-
timizer.

IV. EXPERIMENTS
A. Model Parameter Table

The parameter values we choose during implementa-
tion is shown as below:

Discount Factor v 0.98
Number of Image Stack 4
Learning Rate le-3

Number of Time Step 1000
Number of Training Epoch|20000

B. Structure of Actor-Critic Network

The figure shows the structure of our actor-critic net-
work. It contains a CNN backbone and three headers.
The CNN backbone of a CNN net which takes the image
data as inputs and extract the feature of the input im-
age.The three headers are responsible for v, @ and g for
PPO.

C. Structure Parameter Table

The parameter values we choose during implementa-
tion is shown as below:

convl (6,6, 8),s=2, p=1, BatchNorm, ReLLU

conv2 5,5, 16), s=2, p=1, BatchNorm, ReLU

conv3 (5,5, 32),s=2, p=1, BatchNorm, ReLU

conv4 (3,3, 64), s=2, BatchNorm, ReLU

conv53 (3,3, 128), s=1, BatchNorm, ReLU

conv6 (3,3,256),s=1,ReLU

v head Linear(2§6, 128), ReLU, Linear(128, 32)
. ReL.U, Linear(28, 1), ReLU

fcl Linear(256, 128), ReLU

alpha_head | Linear(128, 3), SoftPlus

beta_head | Linear(128,2), SoftPlus

D. Training & Testing Plot

The Training curve for 2000 Epoches is shown as below
for clearer view:

Training Curve for Racing Car by PPO with Clip

—— Reward for last 10 Episodes
—— Reward for average

8004

600+

Reward Value
8
=]
L

2004

[} 250 500 750 1000 1250 1500 1750 2000
Number of Episodes

This is just a plot for demonstration. Our model
performance is much better, whose cumulative reward
reaches 893.

For testing part, we've tested 50 times. The average
Cumulative Reward is 890. The Testing curve is shown
as below:

Cumulating Reward VS. Iteration Steps

1000 4

950

900 -

850 -

800

Cumulating Reward

750 A

700 A

650

0 10 20 30 40 50
Number of Epoches

V. CONCLUSION

In this project, we use Deep Reinforcement Learning
to solve the problem. For the design of network architec-
ture, we use Actor-Critic Network.

The ”Critic” part estimates the value function. while
the ” Actor” part updates the policy distribution in the
direction suggested by the Critic. Both the Critic and
Actor functions are parameterized with our neural net-
works. The value function we choose is Advantage, which
is similar to Q value. The expression of Advantage is
shown as below:

A, w)—max (Q (2, u'))+(Q(z, u) ~max(Q (v, u)))wk/dt

For the training algorithm, we improve PPO by adding
Clipped Objective. This constraint makes our state
change stay in the trust region and the parameter change
is restricted according to clip parameter £. "PPO with
Clipped Objective” is an algorithm that improves stabil-
ity of training process and model performance.

During the Experiment, we run our model 50 times and
get an average cumulative reward at around 890. This
score guarantees a great simulation for our racing car.

VI. ACKNOWLEDGEMENT

We would like to express our deepest appreciation to
all those who provided us the possibility to complete this
report. A special gratitude we give to our course pro-
fessor, [Dr. Jianbo Shi], whose excellent teaching skills,
helped us to complete the project.

Furthermore we would also like to acknowledge
with much appreciation the work from Xiaoteng
Ma: https://github.com/xtma/pytorch_car_caring
We make some improvements to the network architec-
ture by adding BatchNorm and Regularization. Besides,
we define new Advantage expression and add soft con-
straints to ordinary PPO algorithm. This ensures greater
performance.

In the end, we want to thank all TAs of this course.
They contribute a lot to the course materials and help us
finishing homework and project. Merry Christmas!

VII. REFERENCES

[1] Bakker, B. 2001. Reinforcement learning with long
shortterm memory. In NIPS, 1475-1482. MIT Press.

[2] Cun, Y. L. L.; Bottou, L.; Bengio, Y.; and Haffner,
P. 1998. Gradient-based learning applied to document
recognition. Proceedings of IEEE 86(11):2278-2324.

[3] Karpathy, A.; Johnson, J.; and Li, F.-F. 2015. Vi-
sualizing and understanding recurrent networks. arXiv
preprint.

[4] Tieleman, T., and Hinton, G. 2012. Lecture 6.5—Rm-
sProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for
Machine Learning.

[5] M. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-
ing. “The arcade learning environment: An evaluation
platform for general agents”. In: Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence. 2015.
[6] S. Kakade and J. Langford. “Approximately optimal
approximate reinforcement learning”. In: ICML. Vol. 2.
2002, pp. 267-274.

[7] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lil-
licrap, T. Harley, D. Silver, and K. Kavukcuoglu. “Asyn-
chronous methods for deep reinforcement learning”. In:
arXiv preprint arXiv:1602.01783 (2016).

VIII. VIDEO LINK

https://drive.google.com/open?id=
11dHZOhVXmvp7qSOmkyv05QQIUIsVQOmM7Z

